CIGS 솔라 셀

CIGS는 구리, 인듐, 갈륨, 디셀레나이드를 합성한 조어. CIGS 셀의 가장 큰 강점은,

  • 유리, 금속, 폴리 등 다양한 모재에 증착 처리할 수 있다.
  • 모재가 휘어지면 솔라 셀도 휘어진다.
  • 20%대의, 수긍할 수 있는 발전 효율을 보여준다.

최근에 각광을 받고 있지만, 약 70여년 전에 착안된 셀 제조 기술입니다. 다음은, 인터넷의 소개 글입니다. (출처 : https://gatewaysolarcoop.com/what-is-copper-indium-gallium-selenide-thin-film-solar-cell/)

ClS 박막 소재는 1953년 Hahn에 의해 처음 합성되었습니다. 1974년 Bell Labs의 Wagner 등은 풀링법(Czochralski)을 사용하여 CIS 단결정을 제조하고, p-CulnSe2 단결정 위에 n-CdS를 증발시켜 CuInSe2 / CdS 이종접합 구조를 형성하여 최초의 구리-인듐 셀레늄 태양 전지를 제조했습니다. 1975년 구조 개선 후, 배터리의 광전 변환 효율은 12.5%였습니다.

1976년 Maine 대학은 광전 변환 효율이 66%인 CuInSe2/CdS 이종접합 박막 태양 전지를 처음 개발했습니다 .

1981년 Boeing Company는 CuInSe2 다결정 박막 의 다성분 공증착 기술을 발명했고 , 제조된 박막 태양 전지의 광전 변환 효율은 9.4%에 도달했습니다. 1982년 보잉은 CdS를 대체하여 ZnCd 1-x S를 증발시켜 ClS 다결정 박막과 헤테로접합을 형성하여 CdS 흡수로 인한 단파 광자 손실을 줄였으며 흡수층은 저저항 CIS와 고저항 CIS 박막의 이중층 구조를 사용했습니다. 개발된 박막 셀의 효율은 10.6%입니다.

1987년 아르코솔라는 셀렌화법으로 CuInSe 2 다결정 박막을 제조하는 새로운 기술을 제안했습니다. 다중 동시 증발법에 비해 이 기술은 더 간단하고 비용이 낮으며 상업적 응용 분야에서 사용될 가능성이 더 높습니다. 구리 인듐 셀레나이드 태양 전지 생산에 중요한 기술입니다.

1988년 아르코솔라는 셀렌화법을 사용하여 광전 변환 효율이 14.1%인 구리 인듐 셀레나이드 태양 전지를 개발했습니다. 태양 스펙트럼을 최대한 활용하기 위해 1980년대 후반부터 사람들은 CuInSe2 재료에 Ga와 S 원소를 첨가하여 밴드 갭을 늘리고 태양 스펙트럼과 더 잘 일치시켜 더 높은 광전 변환 효율을 얻었습니다.

1994년 미국의 NREL은 3단계 공동 증발법을 발명했습니다. 제조된 ClGS 필름의 입자 크기가 크게 증가하여 CIGS 필름의 품질이 향상되었고 배터리의 개방 회로 전압이 증가했을 뿐만 아니라 길이 방향으로 Ga 원소의 농도 기울기로 인해 에너지가 형성되었습니다. 밴드 기울기는 광생성 캐리어의 수집을 개선하고 광전 변환 효율은 16.4%에 도달합니다.

그 이후로 소면적 구리 인듐 갈륨 셀레나이드 태양 전지의 효율 기록은 NREL이 보유하고 있습니다. 1999년에는 구리 인듐 갈륨 셀레나이드 박막 전지의 변환 효율이 18.8%(0.449cm²)로 증가했습니다. 2010년에 이 셀의 광전 변환 효율은 20.8%(0.419cm²)에 도달하여 지금까지 가장 높은 기록을 세웠습니다…”

* 이미지 출처 : www.pv-magazine.com/2024/04/29/midsummer-builds-200-mw-cigs-solar-module-factory-in-southeastern-sweden/

POST 목록

  • SCAN 장치와 RF 에너지

    송신 회로에 수 uH 코일을 두고 적당한 LC 동조 회로를 구성한 다음, 이격된 곳에 있는 다른 코일을 향해 RF 에너지를 방사합니다. 수신 회로도 같은 코일을 쓰고 적당히 동조 회로가 구성되었다고 하면, 그리고 획득된 RF 에너지의 특정 파형(주파수, 예를 들어 100Khz)을 정류 평활하는 회로까지 배치되었다고 하면, A 지점에서 B 지점으로 전기 에너지를 전달할 수 있습니다. 무선…

  • BS F 8414/KS F 8414 내화 실험

    과거 대형 물류창고 화재 등 몇몇 사례가 건물 외벽 마감에 관한 국가 관리 수준을 바꿔놓았고, 난연 소재 사용에서 불연 소재 사용으로 전이 중입니다. 그러면서, 사용 소재에 대한 강화된 내화 실험을 진행하게 되는데, 영국에서 시행한, 건물 화재 시 불의 전이(Fire Propagation)를 살펴보는 BS 8414 기준이 차용되었습니다. 테스트는, 빌딩 등 건물을 의사 모방하는 커다란 ‘ㄱ’ 자형 시멘트…

  • 최대 전력점, MPP 이해

    태양광 패널의 발전 전압과 발전 전류 그리고 소모 전류의 상관관계는 아래 그림과 같습니다. 모든 것은 출력 전력(P) = 출력/소모 전압(V) × 출력/소모 전류(I) 공식에 따릅니다. 예를 들어, 한여음 태양광 패널 내 CELL의 광 변환량이 최대치이지만, 소모 전류 즉, 계통 공급되는 전류(I)의 양이 크다면, 해당 패널은 이상적인 MPP를 충족할 수 없습니다. 그 관점에서 패널의 MPP 충족…

  • RPS 인버터 이해

    가정집으로 들어오는 전기는 AC 상용 전원입니다. DC로 생산된 태양광 패널의 발전 전력은 반드시 AC로 변환되어야 집에서 쓰거나 상용 전력 계통에 병입할 수 있습니다. 그것을 RPS 발전이라고 합니다. 어떤 것에 기준점을 두느냐에 따라서, 1) 어떤 변환 장치를 이용하여, 상용 전원의 AC를 DC로 바꿀 때는 컨버터(Converter)라고 하고, 2) 태양광 패널의 DC 발전 전력을 상용 전원의 AC로 바꾸는…

  • 태양광 RPS 고장 모드 분석

    다음은, ‘태양광발전시스템의 사고예방을 위한 고장모드 분석, 2024년)’이라는 간이 연구논문의 일부입니다. 1. 태양광 고장 유형의 분류 2. 위험우선순위(RPN) 평가 다음은 각 구성품의 고장이 어떤 파급효과를 가져오는지를 보여주는 평가 그래프로서, 케이블 연결 상태와 바디 다이오드(Bypass Diode) 오류의 영향도가 가장 크다는 것을 알 수 있습니다. 이상의 자료에서 유의할 것은, 시스템에 대한 오류의 파급 영향도와 시스템 고장을 유발하는 빈도는…

  • 영농형 RPS 이해

    영농형 발전(Agrivoltaic)에서, 농작물과 RPS 발전 시스템이 태양의 광 에너지를 나눠써야 한다는 논리적 한계를 생각해야 합니다. 모순적 요소를 인정하고 광 에너지를 어떻게 적절히 배분할 것인 특히, 농작물 생육을 방해하지 않는 구조물을 어떻게 만들 수 있는가와 그것을 현장에 어떻게 배치하는가, 두 가지가 영농형 태양광 발전시스템 기술 개발의 핵심입니다. 대표적인 구조는, □ 지붕식 구조 트랙터, 이양기 등 농사용…